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Hall Effect on Unsteady Couette Flow with Heat Transfer Under
Exponential Decaying Pressure Gradient
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The unsteady Couette flow of an electrically conducting, viscous, incompressible fluid

bounded by two parallel non-conducting porous plates is studied with heat transfer taking the

Hall effect into consideration. An external uniform magnetic field and a uniform suction and
injection are applied perpendicular to the plates while the fluid motion is subjected to an
exponential decaying pressure gradient. The two plates are kept at different but constant

temperatures while the Joule and viscous dissipations are included in the energy equation. The

effect of the ion slip and the uniform suction and injection on both the velocity and temperature

distributions is examined.
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Nomenclature
. Viscosity parameter

: Thermal conductivity parameter

. Specific heat at constant pressure

. Eckert number

. Hartmann number

. Unit vector in the axial direction

. Unit vector in the vertical direction
 Unit vector in the z-direction

. Current density

. Thermal conductivity

. Separation between the two plates

. Pressure gradient

. Prandtl number

. Reynolds number

. Suction parameter

> Time
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. Temperature of the fluid
T : Temperature of the lower plate
T> : Temperature of the upper plate
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m . Hall parameter

N

. Velocity component in the x-direction

S

. Velocity component in the z-direction
U, : Velocity of the upper plate

Vo . Suction velocity

. Axial direction

. Distance in the vertical direction

. Distance in the z-direction

. Viscosity of the fluid

. Density of the fluid

. Electrical conductivity of the fluid

: Hall factor
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1. Introduction

The magnetohydrodynamic flow between two
parallel plates, known as Hartmann flow, is a
classical problem that has many applications in
magnetohydrodynamic (MHD) power generators,
MHD pumps, accelerators, aerodynamic heating,
electrostatic precipitation, polymer technology,
petroleum industry, purification of crude oil and
fluid droplets and sprays. Hartmann and Lazarus
(1937) studied the influence of a transverse uni-
form magnetic field on the flow of a conducting
fluid between two infinite parallel, stationary, and
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insulated plates. Then, a lot of research work con-
cerning the Hartmann flow has been obtained un-
der different physical effects (Tao, 1960 ; Alpher,
1961 ; Sutton et al., 1965 ; Cramer et al., 1973 ;
Nigam et al.,, 1960; Tani, 1962 ; Soundalgekar
et al.,, 1979 ; 1986 ; Abo-El-Dahab,1993; Attia,
2005). In the above mentioned work the Hall
term was ignored in applying Ohm’s law. In fact,
the Hall effect is important when the Hall para-
meter, which is the ratio between the electron-
cyclotron frequency and the electron-atom-colli-
sion frequency, is high. This happens when the
magnetic field is high or when the collision fre-
quency is low (Sutton et al., 1965 ; Cramer et al.,
1973). The Hall term was ignored in applying
Ohm’s law, as it has no marked effect for small
and moderate values of the magnetic field. How-
ever, the current trend for the application of mag-
netohydrodynamics is towards a strong magnetic
field, so that the influence of the electromagnetic
force is noticeable under these conditions, and the
Hall current is important and has a marked effect
on the magnitude and direction of the current
density and consequently on the magnetic-force
term (Sutton et al., 1965; Cramer et al., 1973).
Tani (1962) studied the Hall effect on the steady
motion of electrically conducting and viscous
fluids in channels. Soudalgekar et al. (1979 ; 1986)
studied the effect of the Hall currents on the
steady MHD Couette flow with heat transfer. The
temperatures of the two plates were assumed
either to be constant (Soundalgekar et al., 1979)
or to vary linearly along the plates in the direc-
tion of the flow (Soundalgekar et al., 1986).
Abo-El-Dahab (1993) studied the effect of Hall
current on the steady Hartmann flow subjected
to a uniform suction and injection at the bound-
ing plates. Later, Attia (1998) extended the prob-
lem to the unsteady state with heat transfer, with
constant pressure gradient applied.

In the present study, the unsteady Couette flow
and heat transfer of an incompressible, viscous,
electrically conducting fluid between two infinite
non-conducting horizontal porous plates are stu-
died with the consideration of the Hall current.
The upper plate is moving with a uniform veloci-
ty while the lower plate is kept stationary. The
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fluid is acted upon by an exponential decaying
pressure gradient, a uniform suction and injection
and a uniform magnetic field perpendicular to
the plates. The induced magnetic field is neglect-
ed by assuming a very small magnetic Reynolds
number (Sutton et al., 1965 ; Cramer et al., 1973).
The two plates are maintained at two different
but constant temperatures. This configuration is a
good approximation of some practical situations
such as heat exchangers, flow meters, and pipes
that connect system components. The cooling of
these devices can be achieved by utilizing a por-
ous surface through which a coolant, either a
liquid or gas, is forced through a suction or in-
jection process. Therefore, the results obtained
here are important for the design of the wall and
the cooling arrangements of these devices. The
governing equations are solved numerically tak-
ing the Joule and the viscous dissipations into
consideration. The effect of the magnetic field,
the Hall current and the suction and injection
on both the velocity and temperature distributions
is studied.

2. Description of the Problem

The two non-conducting plates are located at
the y==17 planes and extend from x=— to
o0 and z=—00 to oor as shown in Fig. 1. The
upper plate is moving with a uniform velocity U,
while the lower plate is kept stationary. The lower
and upper plates are kept at the two constant
temperatures 73 and 7, respectively, where T3>
7. The fluid flows between the two plates under
the influence of an exponential decaying pressure
gradient dP/dx in the x-direction, and a uniform
suction from above and injection from below
which are applied at #=0. The whole system is
subjected to a uniform magnetic field B, in the
positive y-direction. This is the total magnetic
field acting on the fluid since the induced mag-
netic field is neglected. From the geometry of
the problem, it is evident that 9/dx =0/dz=0 for
all quantities apart from the pressure gradient
dP/dx. The existence of the Hall term gives rise
to a z-component of the velocity. Thus, the ve-
locity vector of the fluid is
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y=h_U,;=0 upper plate

N

flow direction
Flow due to the x
Hall Clll'n’.‘y s
z

v=-h u=0 Lower plate

Fig. 1 The geometry of the problem

3y, =uly, )itvoj+wy, )k

with the initial and boundary conditions u=w=
0 at <0, u=w=0 at y=—h for >0 and u=
U, and w=0 at y=7 for ¢ >0. The temperature
T (y, t) at any point in the fluid satisfies both
the initial and boundary conditions T=7; at
t<0, T=T; at y=~+h, and T=T) at y=—h
for £>0. The fluid flow is governed by the mo-
mentum equation

p%=/xvzz7*€P+f/\§a (1)
where o and p are, respectively, the density and
the coefficient of viscosity of the fluid. If the Hall

term is retained, the current density J is given by

J=c{3AB,—B(JABo)}

where ¢ is the electric conductivity of the fluid,
and B is the Hall factor (Sutton et al., 1965 ;

Cramer et al., 1973). This equation may be solved
in J to yield

oB3
1+ mi?

JABo=— {(u+mw) i+ (w—mu) £} (2)
where m=08B,, is the Hall parameter (Sutton et
al., 1965 ; Cramer et al., 1973). Thus, in terms of
Eq. (2), the two components of Eq. (1) read

ou ou_ _dP | 82u oB2
pﬁ-l- L + 3 A (u+mw) (3)
ow ow FPw  oB?

P o TPV Gy TR

To find the temperature distribution inside the
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fluid we use the energy equation (Schlichting,
1968)

0Cp aal‘ +pcovo %Z; k %Zy{ +/«{<g—z>z+<%—?>z} 5
oB;

where ¢, and k are, respectively, the specific
heat capacity and the thermal conductivity of the
fluid. The second and third terms on the right-
hand side represent the viscous and Joule dis-
sipations, respectively.

The problem is simplified by writing the equa-
tions in the non-dimensional form. We define the
following non-dimensional quantities

Uu ) P tUa
pU2 h

Re=phU,/u is the Reynolds number,
S=uv,/Ub, is the suction parameter,

Pr=pc/k is the Prandtl number,
Ec=U?%/cy(T— T) is the Eckert number,
Ha*=0B21?/ it where Ha is the Hartmann num-
ber,

T,zL:<afo>A is the axial skin friction coeftfi-
0y /3=-1

cient at the lower plate,

ot . . S i

Z',z,]:< — )A is the axial skin friction coeffi-
0y /3=-1

cient at the upper plate,
ow . . ..

Tz, =\ 2~ ) is the transverse skin friction co-
0y /3=—1

efficient at the lower plate,
oW . e

Tzy=\ =~ ).  is the transverse skin friction co-
0y /=1

efficient at the upper plate,

NuL=< 6(? ) is the Nusselt number at the
0y /3=-1
lower plate,
(08 .
Nuv=\—). is the Nusselt number at the
0y /3=-1

upper plate.

In terms of the above non-dimensional vari-
ables and parameters, the basic Eqs. (3)-(5) are
written as (the “hats” will be dropped for conve-
nience)
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3t+58y “dx TRe 3y ©
Re (1+ )

8w ow_ 1 w Hda B

o TSy TRe o Re(i4m) Wm0 ()

1 &T  Ec[/ ou ow \?

AR ay “Rebr g7 " Re all @)*(W”(g)
EcHdZ (4
Re(1+m?)

The initial and boundary conditions for the ve-
locity become

t<0: u=w=0,t>0. u=w=0

y:—l, u=

9)
1, w=0, y=1

and the initial and boundary conditions for the
temperature are given by

£<0: T=0, t>0: T=1, y=+1, T=0, y=—1 (10)

where the pressure gradient is assumed in the
form dP/dx=

stants.

Ce ™™, where C and @ are con-

3. Numerical Solution of the
Governing Equations

Equations (6)-(8) are solved numerically us-
1977) under the
initial and boundary conditions (9) and (10) to

ing finite differences (Ames,

determine the velocity and temperature distribu-
tions for different values of the parameters Ha
and S. The Crank-Nicolson implicit method is
applied. The finite difference equations are writ-
ten at the mid-point of the computational cell and
the different terms are replaced by their second-
order central difference approximations in the y-
direction. The diffusion term is replaced by the
average of the central differences at two succes-
sive time levels. The viscous and Joule dissipation
terms are evaluated using the velocity components
and their derivatives in the y-direction which are
obtained from the numerical solution of the mo-
mentum equations. Finally, the block tri-diagon-
al system is solved using Thomas’ algorithm. All
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calculations have been carried out for C=—35,

=1, Re=1, Pr=1 and Ec¢=0.2. It should be
mentioned that the results obtained herein reduce
to those reported by Attia (1998) for the case of
constant pressure gradient (¢=0). These com-
parisons lend confidence in the accuracy and cor-

rectness of the solutions.

4. Results and Discussion

Figure 2 shows the profiles of the velocity com-
ponents # and w and temperature 7 for various
values of time £. The figure is plotted for Ha=1,
m=3 and S=1. It is observed that the velocity
components and temperature increase with time

1.5

0.5
0
-1 -0.5 0 0.5 1
y
——t=0.1 —m—t=1 —a—t=2

(a)

——t=0.1 —m—t=1 —a—t=2

(b)

-1 0.5 0 0.5 1

——t=0.1 —@—1t=1 —a—1t=2

(c)
Fig. 2 Time development of the profile of: (a) #;
(b) w;and (¢) T (Ha=1, m=3and S=1)
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for small values of time and then decrease as time
develops. For some times they exceed their steady
state values and then go down towards steady
state. This can be explained as, the velocity u
increases from its zero rest value which increases
the driving force of w and then, increases w with
time. The increase in w increases the resistive
force of % and, in turn, decreases % and conse-
quently w. The increase and decrease in % and w
are expected to cause, respectively, corresponding
increase and decrease in viscous and Joule dis-
sipations and, in turn, in temperature 7 .

Figure 3 shows the time evolution of z, w and
T at the centre of the channel y=0 for various

1.5

0.5

Ol.l
0 1 2 3 4

t

—4—mM=0 —8—m=1 —A—m=3

(a)

t

—+—m=0 —a—m=1 —a—m=3

(c)
Fig. 3 Effect of m on the time variation of: (a)
at y=0; (b) w at y=0 and (¢) T at y=0
(Ha=1 and S=0)
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values of the Hall parameter . In this figure,
Ha=1 and S=0. It is clear from Fig. 3(a) that
increasing the parameter 7 increases #. This is
because the effective conductivity (g/(1+n?))
decreases with increasing ¢ which reduces the
magnetic damping force on #. In Fig. 3(b), the
velocity component w increases with increasing
the parameter m slightly (=0 to 1), since in-
creasing s increases the driving force term
(mHa*u/(1+m?)) in Eq. (7) which pumps the
flow in the z-direction. However, increasing m
more decreases the effective conductivity that res-
ults in a reduced driving force and then, decreases
w. Figure 2(c) indicates that increasing e slight-
ly decreases T for all values of t as a result of
decreasing the Joule dissipation. In general, the
effect of m on the temperature 7 can be neglected
especially for higher values of ¢ where the velocity
components # and w become small and conse-
quently, the viscous and Joule dissipations are
neglected.

Figure 4 shows the time evolution of #z, w and
T at the centre of the channel y=0 for various
values of the Hartmann number Hga. In this fig-
ure, =3 and S=0. Figure 4(a) indicates that
increasing Ha decreases u as a result of increas-
ing the damping force on u. Figure 4(b) shows
that increasing Ha increases w since it increases
the driving force on w. However, increasing Ha
more increases w at small ¢ but decreases it at
large #. This can be attributed to the fact that
large Ha decreases the main velocity #, which
increases with time, and reduces the driving force
on w which results in decreasing w at large f.
Figure 4(c) shows that increasing Ha slightly
increases 1" due to increasing the Joule dissipa-
tion. However, for higher Ha, the effect of Ha
on T depends on time. For small ¢, increasing
Ha increases T due to increasing the Joule dis-
sipation. But, for large ¢, increasing Ha decreases
T as a result of decreasing the velocities # and
w and consequently decreases the viscous and
Joule dissipations. It should be mentioned that,
the effect of Ha on the temperature 7 can be
neglected especially for higher values of # where
the velocity components z and w become small
and consequently, the viscous and Joule dissipa-
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tions are neglected.

Figure 5 presents the time evolution of #, w
and T at the centre of the channel y=0 for vari-
ous values of the suction parameter S. In this
figure Ha=1 and m=3. Figures 5(a) and 5(b)
show that increasing the suction decreases %, for
all £, due to the convection of the fluid from
regions in the lower half to the centre which has
higher fluid speed. The effect of S on # can be
neglected for very small time, but becomes more
pronounced as time develops. As shown in Fig. 5
(b), for small ¢, increasing S increases w, but
increasing S more decreases it. As time develops,
increasing S always decreases w as a result of
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0 1 2 3 4
t

—4—Ha=1 —a—Ha=2 ——Ha=3

(a)

0.8
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b M’

o~

—4—Ha=1 —s—Ha=2 ——Ha=3

(b)
0.8
0.6

0.2

0 1 2 3 4
t

—+—Ha=1 —a—Ha=2 —_—— Ha=3

(c)
Fig. 4 Effect of Ha on the time variation of : (a)
at y=0; (b) w at y=0 and (¢) T at y=0
(m=3 and S=0)
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decreasing z which decreases the source term of
w. The increase in w occurs at very small time
can be attributed to the fact that the flow started
impulsively from rest and # increases from its
zero value which increases the driving force of w
and consequently increases w. The suction has
the effect of decreasing z which, in turn, decreases
the damping force of w and its effect appears later
as time develops. Higher suction velocity results
in a shorter time duration at which the decrease
in w occurs. Figure 4(c) shows that increasing
S decreases the temperature at the centre of the
channel. This is due to the influence of convec-
tion in pumping the fluid from the cold lower half

15
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—+—5=0 8—S=1 —x—85=2

—+—5=0 8—S=1 —x—85=2

(c)
Fig. 5 Effect of m on the time variation of : (a)  at
y=0; (b) w at y=0; and (¢) T at y=0
(Ha=1 and m=3)
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Table 1 Variation of the steady state values of 7,
TxU, TZL’ TzU, Nu,_ and Nuu with the Hall
parameter m (Ha=1, S=1)

m=0 m=1 m=3 m=>5
Tx 2.8639 3.1217 3.4701 3.5439
Txy | —3.2919 | —4.0565 | —5.0559 | —5.2647
Tz 0 0.3485 0.2738 0.1844
Tzy 0 —1.0121 | —0.7834 | —0.5262
Nug 0.8593 0.9501 1.0748 1.1015
Nuy | —0.2410 | —0.3400 | —0.4843 | —0.5157

towards the centre of the channel.

Table 1 presents the variation of the steady
state values of the skin friction coefficients at both
the lower and upper plates (z,, 7x,, Z;, and zz,)
and the Nusselt number at the lower and upper
plates (Nu: and Nuy) with the Hall parameter
m for Ha=1 and S=1. It is clear that increas-
ing m increases 7y, and the magnitude of zx, but
decreases zz; and the magnitude of zz,. Also, in-
creasing m increases Nu; and the magnitude of

Nuu.
5. Conclusions

The unsteady Couette flow of a conducting
fluid under the influence of an applied uniform
magnetic field has been studied considering the
Hall effect in the presence of uniform suction and
injection and an exponential decaying pressure
gradient. Introducing the Hall term gives rise to
a velocity component w in the z-direction and it
affected the main velocity # in the x-direction.
The effect of the magnetic field, the Hall para-
meter and the suction and injection velocity on
the velocity and temperature distributions has
been investigated. As time develops, increasing
the Hall parameter m increases the velocity com-
ponent # and increases the velocity component w
for small m and decreases it for large m. It is
found that the effect of large Ha on w depends
on time. Also, it is of interest to detect that the
effect of the parameter S on the velocity compo-
nent w depends on time. In general, the effect of
Ha or m on the temperature 7T can be neglected
especially for higher values of time.
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